

26th - 28th September 2018, Dublin

SÖX NOQX SECA NNG Don't we all Love an Acronym?

George D. Margetis | B.S.E., M.S.E. (MIT) | Managing Director Ioanna Kafka | MEng, MSc | Naval Architect & Marine Engineer

^{The} 2020 **Emission Control** Regulations Financial mpact Alternatives and Solutions

George D. Margetis | *B.S.E., M.S.E. (MIT)* | Managing Director Ioanna Kafka | *MEng, MSc* | Naval Architect & Marine Engineer

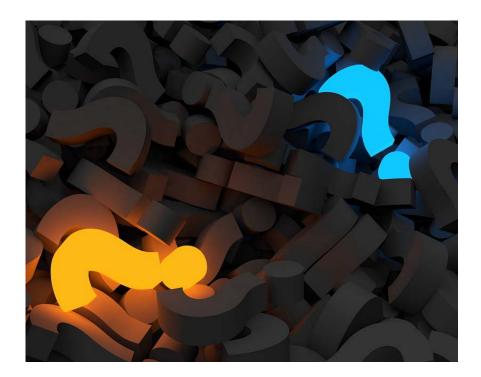
Is this the beginning of a **New era** in Fuels? ^{Is} "LNG as a fuel" prevailing and becoming a **Standard?**

George D. Margetis | *B.S.E., M.S.E. (MIT)* | Managing Director Ioanna Kafka | *MEng, MSc* | Naval Architect & Marine Engineer

's greener shipping threatening Operators & Underwriters' "greener" pockets?

George D. Margetis | B.S.E., M.S.E. (MIT) | Managing Director Ioanna Kafka | MEng, MSc | Naval Architect & Marine Engineer

Are we Facing a milestone?



- Early 20th Century Coal to Diesel
- 1983 Segregated ballast tanks MARPOL Annex I
- 1992 Double Hull Tanker Vessels MARPOL Annex I
- 1997 Regulations for the Prevention of Air Pollution from Ships MARPOL Annex VI

Low Sulphur Fuels?

- The 2020 Regulations are all about reducing Sulphur (SOx)
- The whole process commenced about a decade ago
- But it peaks in 2020

Can anyone recall, what happened when SOx were initially reduced, some 10 years ago?

Question No.1

What were the consequences in the Marine H&M Market of the initial (mild) reduction of the Sulphur content in Marine fuels, that initiated some 10 years ago?

- H&M Underwriters and Claims people were able to breath better because the air was cleaner and made wiser decisions!
- 2. H&M Underwriters made big profits, as the reduction of sulphur in fuels greatly reduced machinery claims
- 3. H&M Underwriters got stuck with CATALYTIC FINES and started paying millions of \$ in claims

The Outline

The MARGETIS MARITIME Opinion Survey
 What is it all about – The punch line
 Compliant fuel oils – Primary Solution
 Scrubbers – Secondary Solution
 Marine Claims Consequences
 LNG as Fuel

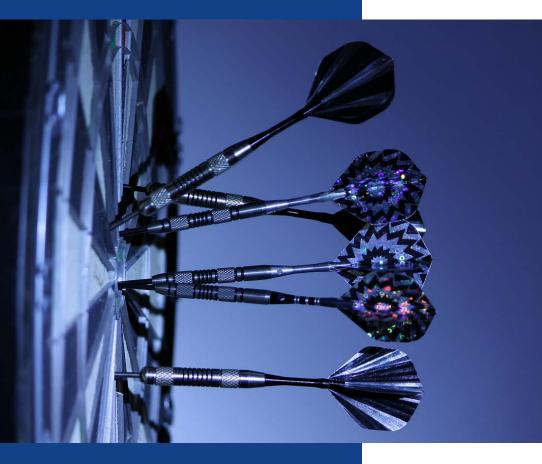
Conclusions

The Outline

The MARGETIS MARITIME Opinion Survey

- What is it all about The punch line
- Compliant fuel oils Primary Solution
- Scrubbers Secondary Solution
- Arine Claims Consequences
- LNG as Fuel
- Conclusions

The MARGETIS MARITIME CONSULTING Opinion Survey



- Questionnaire to various Greek Ship Management Companies
- Received responses from:
 - Abt. 48 Companies
- Representing a fleet of:
 - Abt. 1,143 Ships

The Outline

□ The MARGETIS MARITIME Opinion Survey

What is it all about – The punch line

- Compliant fuel oils Primary Solution
- Scrubbers Secondary Solution
- Marine Claims Consequences
- LNG as Fuel
- Conclusions

Why Shipborne Air Emissions were adopted?

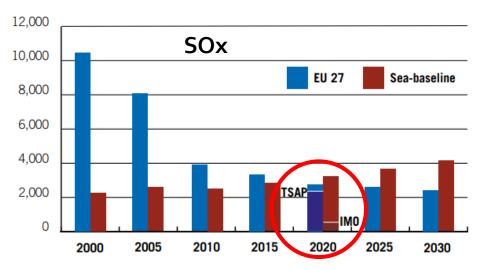
World seaborne trade in cargo ton-miles by type of cargo Billions of ton-miles 60000 60000 50000 50000 40000 40000 30000 30000 20000 20000 10000 10000 2000 01 13 14 15 16° 2017° Chemicals Other (minor bulks Five main dry bulks Container and other dry cargo Projected figures ^a Estimated Source: UNCTAD secretariat calculations, based on data from Clarksons Research, 201

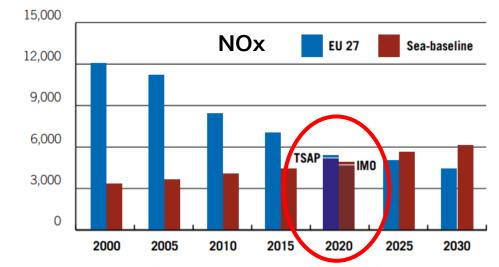
- Diesel engines 90% of the world's ocean going ships
- \rightarrow heavy fuel oils practical and cheap

BUT contain

- sulphur oxides (SOx)
- nitrogen oxides (NOx)
- carbon dioxide (CO2)
- particulate matter (PM)
- Chemical reactions in the atmosphere → SOx and NOx converted into fine particles (sulphate and nitrate aerosols) with significant health impacts

Some statistics...


Air pollution from international shipping accounts approximately for **50,000 premature deaths per year** in Europe, at an annual cost to society of more than **€58 billion**


International ship traffic is responsible for an estimated 7% of the total health effects in Europe due to air pollution in the year 2000, increasing to **<u>12% in the year 2020</u>**

How are shipping emissions compared to land based emissions?

Pollutant emissions from <u>land-based sources gradually coming</u> down **BUT** those from <u>shipping</u> <u>show a continuous increase</u>

EU27 = Emissions from land-based sources (incl. domestic shipping) Sea = Emissions from international shipping in European sea areas TSAP = Target in line with the EU's Thematic Strategy on Air Pollution IMO = Expected outcome from implementing the revised IMO MARPOL Annex VI

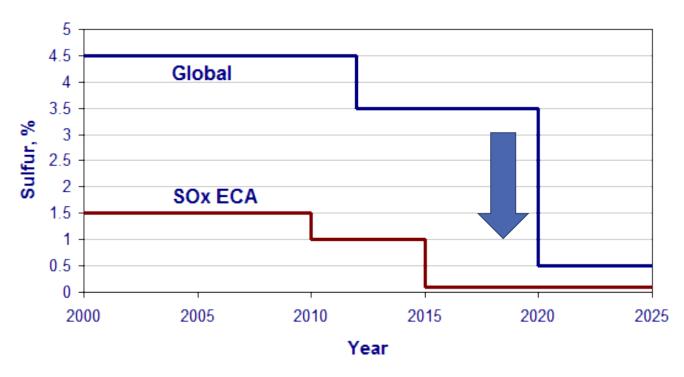
Source: Air Pollution & Climate Secretariat

Question No.2

Do you consider that the new regulations will indeed have a positive impact to the environment and human health?

- 1. Yes
- **2.** No
- 3. I do not know

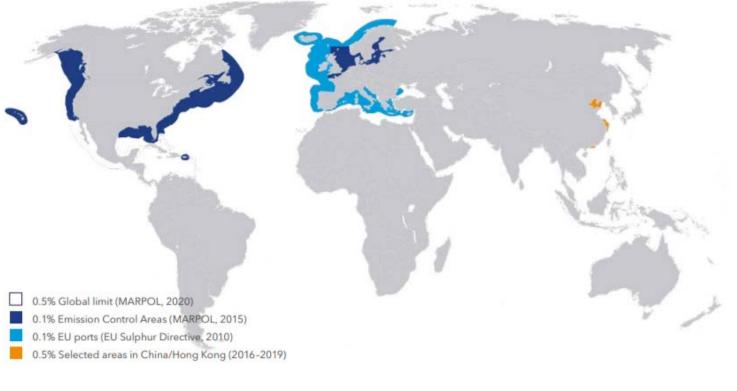
15


Which are these regulations?

MARPOL Annex VI Regulations for the Prevention of Air Pollution from Ships

- Sulphur oxide (SOX) from 3.5% to 0.5% in
 2020 globally
- Emission Control Areas (ECAs) from 1% to
 0.1% in 2015
- Crude oil sulphur ranging from 0.1% to 4.1%
- As per IMO MEPC 72 committee, annual
 - average in 2017 around **2.6%** \rightarrow <u>well above</u>

2020 limits


ECAs

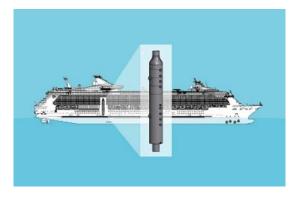
MARPOL Annex VI Regulations for the Prevention of Air Pollution from Ships

- Baltic Sea area (SOx only);
- North Sea area (SOx only);
- North American area (entered into effect 1 August 2012SOx, NOx and PM);
- United States Caribbean Sea area

(entered into effect 1 January 2014 SOx, NOx and PM)

Fueling the solution: there is no one-size-fits-all!

Primary Methods


Low-sulphur fuels

 Using low-sulphur FO or MGO (max 0.5%) globally and ultra-low-sulphur FO or low sulphur MGO (max 0.1%) in ECAs

- Gas or dual-fuel engines
- Using Liquefied Natural Gas (LNG) as fuel

Secondary Method

- Exhaust Gas Cleaning Systems
- Burning HFO (3.5%) with scrubber installed

Question No.3

Which solution do you think that will eventually prevail?

- 1. Widespread usage of LNG as fuel
- 2. Widespread usage of **Compliant Fuels**
- 3. Widespread usage of Scrubbers
- 4. I don't have enough information to decide

But there is something in common... high cost!

Cost of Measures about 50 billion USA dollars / per year

The Outline

The MARGETIS MARITIME Opinion Survey
 What is it all about – The punch line
 Compliant fuel oils – Primary Solution
 Scrubbers – Secondary Solution
 Marine Claims Consequences
 LNG as Fuel

Conclusions

FuelTypes	Category	Viscosity Range (cSt)	Sulphur Content Range (%)	Price Range (\$)
IFO 180	Residual	180	1.0 - 3.5	470
HFO 380	Residual	380	1.0-3.5	435

FuelTypes	Category	Viscosity Range (cSt)	Sulphur Content Range (%)	Price Range (\$)
MDO	Distillate	10	0.1-1.5	630
MGO	Distillate	5	0.1-1	630
IFO 180	Residual	180	1.0 - 3.5	470
HFO 380	Residual	380	1.0 - 3.5	435

Fuel Types	Category	Viscosity Range (cSt)	Sulphur Content Range (%)	Price Range (\$)
MDO	Distillate	10	0.1-1.5	630
MGO	Distillate	5	0.1-1	630
0.1% HFO	Not standardized	70	< 0.1	610
0.5% HFO	Not standardized	70	< 0.5	6??
IFO 180	Residual	180	1.0 - 3.5	470
HFO 380	Residual	380	1.0-3.5	435

FuelTypes	Category	Viscosity Range (cSt)	Sulphur Content Range (%)	Price Range (\$)
MDO	Distillate	10	0.1-1.5	630
MGO	Distillate	5	0.1-1	630
0.1% HFO	Not standardized	70	< 0.1	5??
0.5% HFO	Not standardized	70	< 0.5	5??
IFO 180	Residual	180	1.0 - 3.5	470
HFO 380	Residual	380	1.0 - 3.5	435

Beware...

Higher Cost of Fuel!

Beware...

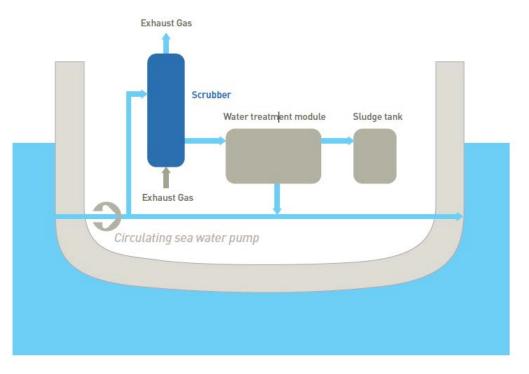
The Outline

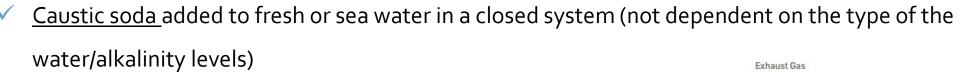
- □ The MARGETIS MARITIME Opinion Survey
- □ What is it all about The punch line
- Compliant fuel oils Primary Solution
 - Scrubbers Secondary Solution
- Arine Claims Consequences
- LNG as Fuel
- Conclusions

What is a scrubber?

- Main principle → washing the exhausts prior releasing to the atmosphere
- Converts SOx to <u>harmless sodium sulphate</u>
- 3 Main Types:
- Open Loop
- Close Loop
- Hybrid

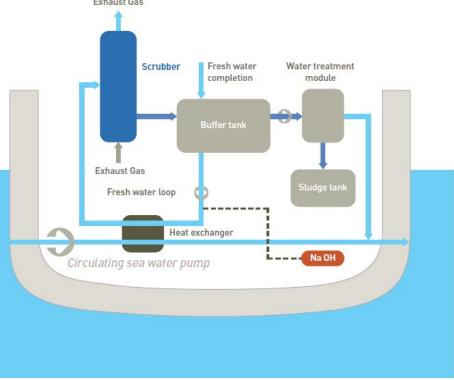
Regulated by:
 Annex 1 Resolution MEPC.259(68) adopted on 15 May 2015:
 <u>Guidelines For Exhaust Gas Cleaning Systems</u>


Open Loop: Uses untreated seawater and washwater is discharged at sea


- Untreated seawater of natural alkalinity (<u>no need for chemical additives</u>)
- <u>Quite high pumping capability</u> required
- <u>Efficiency increases in higher alkalinity waters</u>
- Washwater <u>discharged into the sea</u> after being treated

BUT

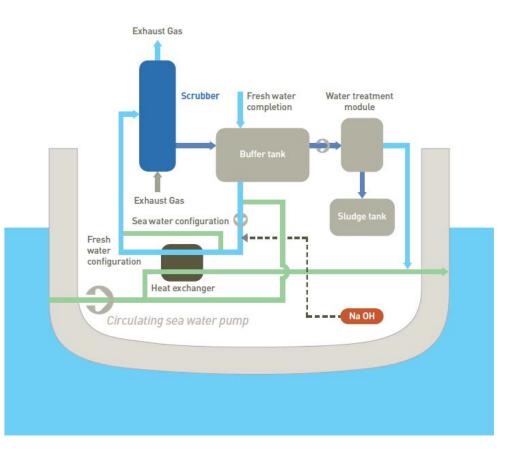
- Greater energy consumption compared to a close loop system
- Not permitted to discharge washwater everywhere


Closed Loop: Uses caustic soda and washwater is **not** discharged at sea

- Wash water passes into a <u>process tank</u> where it is cleaned before being <u>recirculated</u> with a small discharge overboard
- The amount of the water needed is about <u>half of the flow in</u> an open loop system

BUT

More tanks are required and system is more <u>complex</u> than open


Hybrid: Combined open and closed loop

- <u>Flexibility</u> to either use closed loop or open loop technology
- Used as an open loop system when in open sea and as a closed loop system when in harbour
- Increasingly <u>preferred</u> given its flexibility

BUT

Increased <u>cost</u> and more <u>complex</u> system than open & closed loop

Which are the main parameters to consider when choosing system?

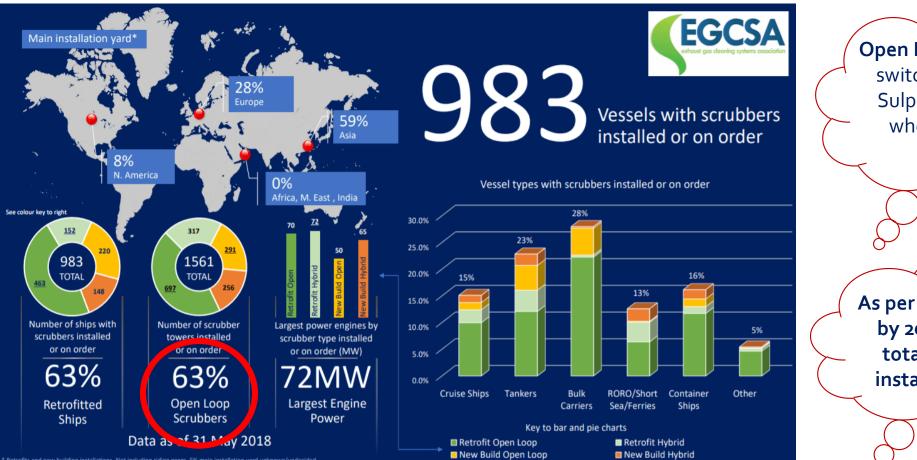
- Newbuilding vs retrofit
- Operating route
- Space availability onboard
- Capital vs operational costs
- Price differential between low sulphur and heavy fuel
- Sludge handling and disposal
- Availability of heavy fuel oil

In Line

<u>U type</u>

Question No.4

What percentage of the world fleet is EXPECTED to be fitted with scrubbers by the 2020 deadline?


- **1**. Less than 5%
- **2.** Around 15%
- 3. Around 25%
- **4.** Around 35%
- 5. I have no idea

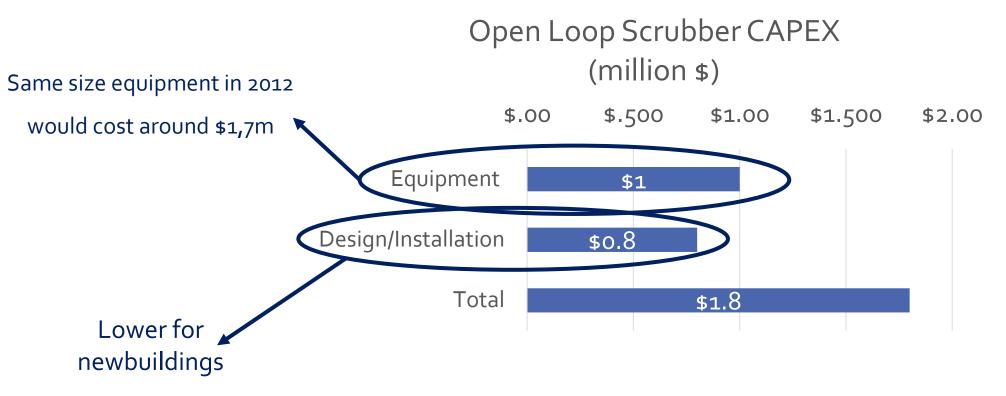
34

Current trends on scrubbers

Open Loop Scrubber and switching to ultra low Sulphur fuels in ports where discharge is prohibited...

As per Wood MacKenzie, by 2020 only 2-3% of total fleet will have installed scrubbers...

Food for thought...



- If only 2-3% of vessels will have scrubbers, will there be HFO readily available worldwide?
 - Imagine a terminal having to maintain a bunkering barge only for such a small amount of clients for HFO
 - Big players with scrubbers will have contracts with terminals for HFO at a pre-agreed price
- If majority of scrubbers are open loop how can we ensure that disposal will not be prohibited in the future in areas, such as the Baltic, North Sea etc. ?

Scrubbers Installation Costs

- Equipment prices have dropped significantly from the previous years
- Example for a Panamax Bulk Carrier retrofit

Case Study for MGO and Scrubbers

Reference vessel	Panamax Bulk Carrier			
Average Percentage Spent in SECA	20%			
Average Percentage Spent outside SECA	80%			
Fuel Cost Differential	\$150.00	\$200.00	\$250.00	
Additional Yearly Costs if NO technology installed	\$759,000	\$1,012,000	\$1,265,000	
Yearly Savings if Scrubber installed	\$938,750	\$1,255,000	\$1,571,250	
Return period (years)	2	1.4	1	

The Outline

- □ The MARGETIS MARITIME Opinion Survey
- □ What is it all about The punch line
- Compliant fuel oils Primary Solution
- □ Scrubbers Secondary Solution

Marine Claims Consequences

LNG as Fuel

Conclusions

Impact to the insurance market

Scrubbers

- New machinery
- <u>Water</u> in engine combustion chamber
- <u>LOH</u> for complex damages

- \rightarrow overheating damages similar to boilers
- → machinery malfunction/damages
- \rightarrow idle vs expensive low sulphur fuels

Impact to the insurance market

MGO/MDO Advantages:

- Convenient and widely available
- Operational experience in industry
- Cleaner fuel less machinery related malfunctions

Compliant fuel oil blends:

- Low quality/out of spec bunker
- May contain cat fines as products of refinery streams
- Compatibility and stability issues
- Lubricity issues

<u>Compliant low</u> <u>sulphur fuels</u>

- <u>Cat fines</u>
- New blend of fuels / <u>uncertainties</u>

VS

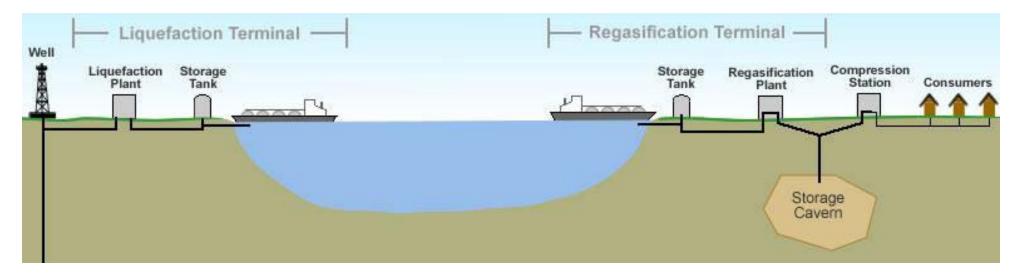
- Fuel incompatibility
- Different <u>properties</u> (viscosity, pour point etc.)

- \rightarrow main cause of machinery failures
- \rightarrow combustion issues
- \rightarrow sludge accumulation, dedicated tanks
- \rightarrow overheating, delicate changeover procedures

Beware...

More Combustion Related Claims!

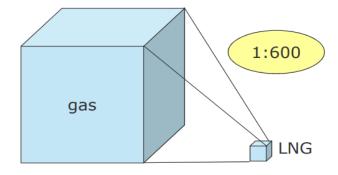
The Outline


- The MARGETIS MARITIME Opinion Survey
- □ What is it all about The punch line
- Compliant fuel oils Primary Solution
- Scrubbers Secondary Solution
- Marine Claims Consequences

LNG as Fuel

Conclusions

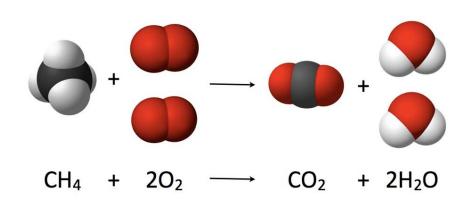
What is LNG?

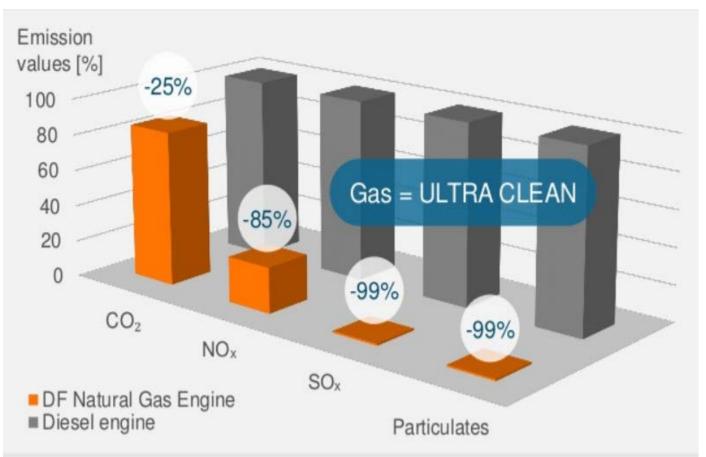


Natural Gas transported in liquefied form onboard specialized ships in well-insulated tanks

Why?

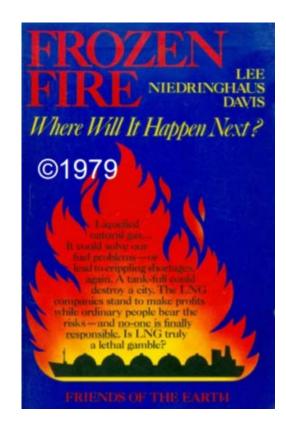
Liquefied gas occupies **1/600** of the volume of been vapour

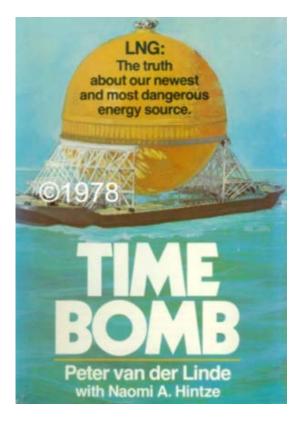

 \rightarrow So easier to be stored and transported



Why does it constitute a solution for compliance?

Typical composition:


Methane 94.0% Ethane 4.7% Propane o.8% Butane o.2% and Nitrogen o.3%



But is it safe to use?

Question No.5

Over the last 55 years how many serious Marine Casualties / Explosions / Fires have been directly caused due to the LNG?

- **1**. Zero
- **2.** 1 to 5
- **3**. 5 to 10
- 4. More than 10
- 5. I do not know

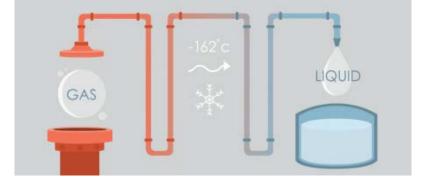
47

But is it safe to use?

- General misconception
- Since **1960s on LNG carriers** almost 60 years of marine

experience

- On non-gas carriers since 2002
- As per DNV GL, **no reported major events**, e.g. fire, explosion,
 - grounding etc. caused by LNG fueled engines or ancillaries
- No reported incidents with significant LNG release in more than 50,000 bunkering operations



Which are its main properties?

Temperatures between -159 to -162°C at atmospheric pressure – Cryogenic nature

Clear, colourless, non-toxic and non-corrosive

Lighter than water – if spilled, floats and vaporizes quickly causing no harm

Which are its main properties?

MARITIME CONSULTING

 If released in air, visible vapor cloud created, becomes progressively lighter, rises and dissipates

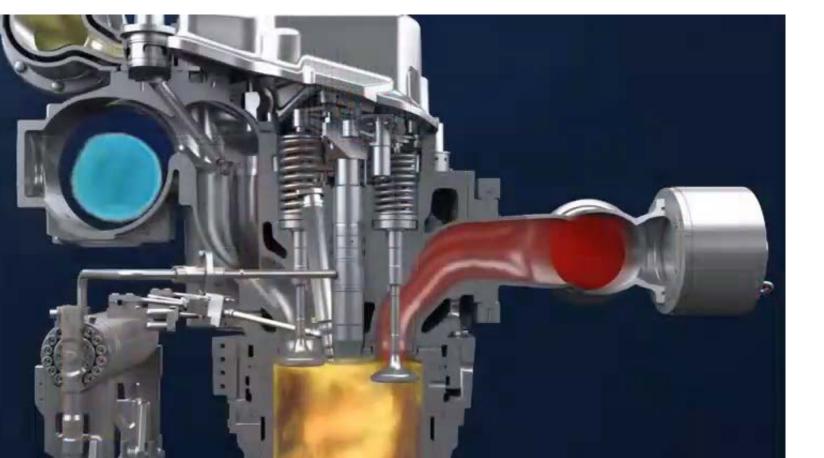
LNG is not explosive - not pressurized and contains no oxygen

 ✓ LNG does not burn on its own → if mixed with air in a mixture that contains between 5-15% of methane and finds an ignition source

Which are the main CHALLENGES to address?

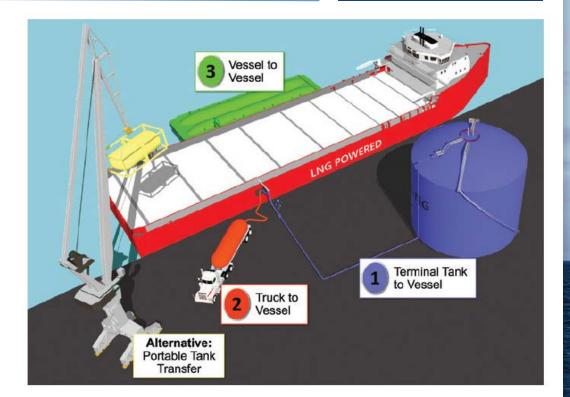


So equipment, piping, materials, handling and safety much different than for an oil fuel system!


- Gas-fuelled marine engines and associated machineries
- Onboard storage
- Onboard handling
- Bunkering
- Infrastructure
- Financial aspects
- Regulatory framework

Example of Low Pressure Four Stroke Dual Fuel MAN L35/44DF

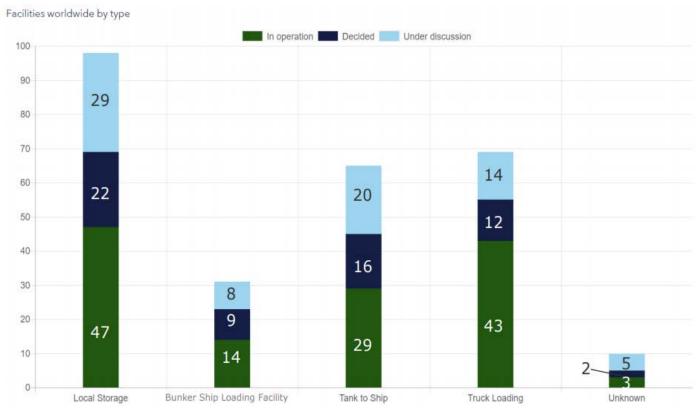
Example of Low Pressure Four Stroke Dual Fuel MAN L35/44DF



MARITIME CONSULTING

Which are the main LNG bunkering options?

- 1. Ship to Ship transfer (STS)
- 2. Truck to Ship transfer (TTS)
- 3. Terminal/Pipeline to Ship transfer (PTS)
- 4. The use of portable tanks
- Today, small number of LNG fuelled vessels, so mainly bunkering using <u>LNG tank trucks</u>
- Bunker vessels and barges first one about 5 years ago


→ As of August 2018, six (6) LNG bunker vessels in service and twelve (12) on order

Bunkering infrastructure is a work in progress..

Is the "chicken-and-egg" problem solved?

 Cooperation between the ports and ship owners → financially beneficial for both sides and promote the use of LNG as a marine fuel

Some 2018 updates on bunkering

NYK memorandum of understanding with three compatriots for supplying LNG as fuel in western **Japan**

Yokohama-Kawasaki study for LNG bunkering hub in **Tokyo** bay By the end of 2018, Port of Amsterdam to have an LNG bunkering pontoon in operation

Port of **Amsterdam** to increase the port dues discounts for vessels using LNG as fuel Ship-to-Ship bunkering at **Rotterdam** from June 2018. Shorthaul sea vessels first followed by LNG fuelled cruise ships in November 2018 and deep sea vessels by end of 2019.

The Maritime and Port Authority of **Singapore** (MPA) injected S\$12 million to boost LNG bunkering in the Port of Singapore. Half of this S\$12 million to co-fund the building of new LNG bunker vessels (LBVs).

Poseidon Med II LNG bunkering project in **East Med** - Greece, Italy & Cyprus

Conversion is technically feasible but is it economically viable?

YES if additional space for LNG system and storage exists

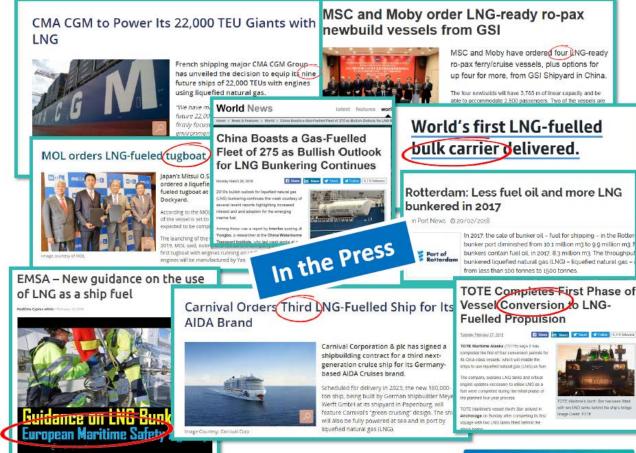
Important factor to consider \rightarrow age of ship - <u>too expensive investment</u> and may not give its money back!


As per DNV GL, LNG fuelled newbuilding may be around <u>20-25% more expensive</u> than a conventional design
 A retrofit may require about <u>30-40% of the newbuilding price</u>

Co	osts			
2 x 4,000 cbm Type C Tanks	\$8 Million	Detwofitti	Detwo fittige an end for a	
Engine Parts	\$5 Million		ng costs for a	
Docking & Off-Hire	\$5 Million	8,500 TEU	J Container Ship	
Installation & Piping	\$10 Million			
TOTAL CAPEX	\$28 Million			
EVIDA cost for a nowbuilding		Costs		
		2 x 4,000 cbm Type C Tanks	\$8 Million	
EXTRA cost for a newbuilding	Engine Parts	\$2 Million		
8,500 TEU Container Ship		Piping	\$3 Million	
		TOTAL CAPEX	\$13 Million	

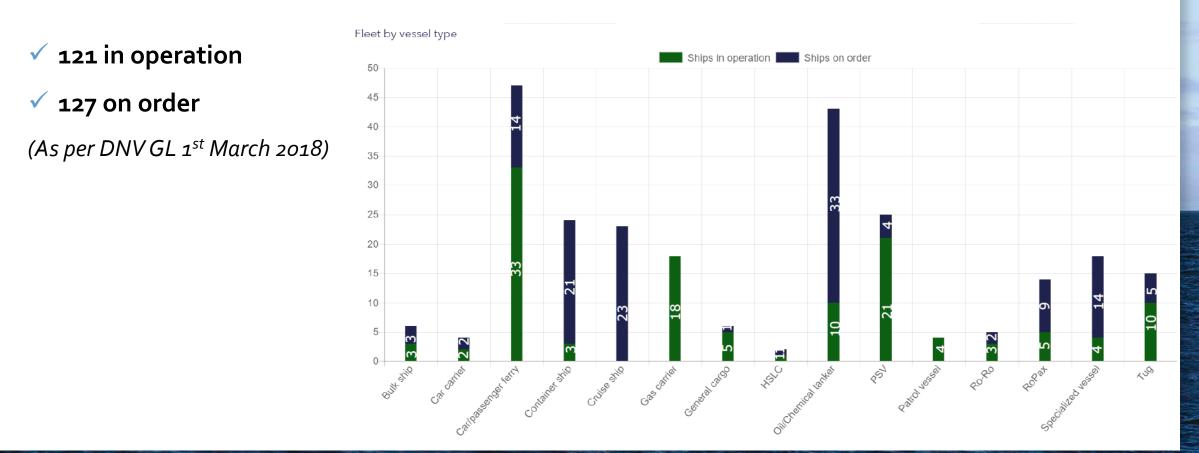
Have any conversions taken place?

- The "<u>Bit Viking</u>" owned by Tarbit Shipping became the world's first merchant ship to undergo a LNG conversion
- Started Summer 2010 and completed Autumn 2011


- The <u>"Wes Amelie"</u> 1,000 TEU was the <u>first</u>
 <u>containership</u> to undergo DF conversion
 by German Dry Docks in Bremerhaven in
 2017.
- Backed by the German Federal Ministry of
 Transport and Digital Infrastructure (BMVI)

LNG fueled ships scaling up..

- □ 2 LNG fueled car carriers for Volkswagen
- Construction of LNG ROPax vessel "Honfleur"
- Launch of first of 5 LNG hybrid ferries for Norway
- Carnival building 9 LNG fueled cruise liners
- TOTE to complete 2 LNG retrofits by Q1 2021
- 1st LNG fueled Supramax Bulk Carrier


delivered

How many LNG fueled vessels operate today?

Shift from short-sea shipping to deep-sea shipping space

But how much does LNG fuel cost?

IMCC - Dublin | September 26th, 2018

Case Study for LNG Newbuilding

Begin of July 2018:

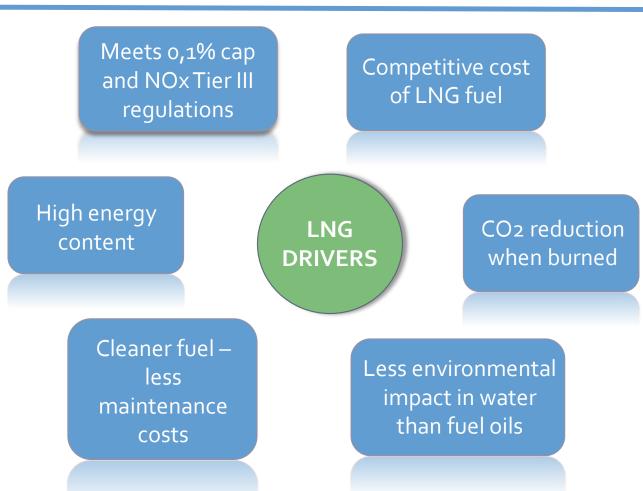
- ✓ LNG = 390 \$/MT
- ✓ MGO = 640 \$/MT

Round Trip in SECA / Vysotsk-Bremen

- Panamax Bulk Carrier
- Distance: abt. 2,230 nm
- Duration of trip: abt. 13 days

Compliance Option	<u>0.1% MGO</u>	<u>LNG</u>	
Approx. Yearly Fuel Costs	\$4,000,000	\$2,300,000	
Yearly Savings with LNG	\$1,700,000		
Investment for Installation	-	\$6,000,000	
Return Period of Investment (years)	3 1/2		

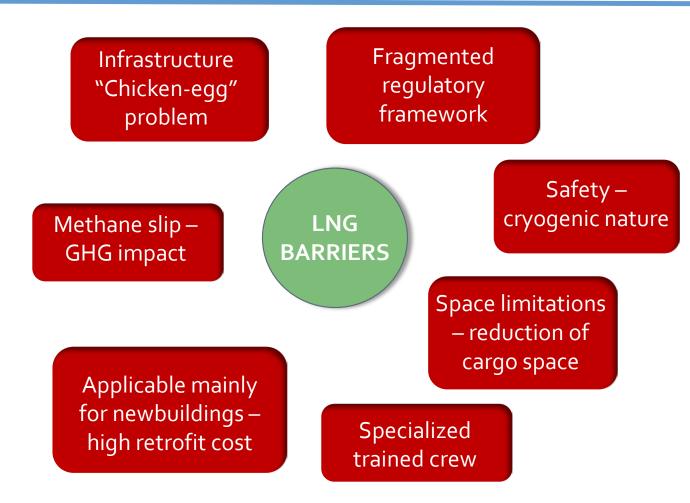
Impact to the insurance market


- Cleaner/better combustion
 - Safe and environmental friendly
 - Modern technology, complex machinery
 - Cryogenic nature

- ightarrow reduce combustion related claims
- \rightarrow low risks for fires, explosions and pollution
- \rightarrow more expensive damage repairs
- → hull cracking, personnel injuries etc.

LNG as fuel

Drivers for LNG as fuel



IMCC - Dublin | September 26th, 2018

Barriers for LNG as fuel

IMCC - Dublin | September 26th, 2018

Focus on Methane!

Methane escapes to the atmosphere in some quantities unburnt during extraction, transportation, bunkering and after combustion.

Over a 20 years period, methane is about 86 times worse than CO2 in warming the planet!

What will be the outcome for LNG when **IMO** roadmap for **GHG emissions reduction** develops?

LNG to be viewed only as a <u>SOx and NOx compliant fuel</u> and those who invest to proceed on these grounds, or on its projected future price but <u>not on reduced GHG effects</u>

Methane slip – GHG impact

However...

Minor impact by 2020!

The Outline

The MARGETIS MARITIME Opinion Survey
 What is it all about – The punch line
 Compliant fuel oils – Primary Solution
 Scrubbers – Secondary Solution
 Marine Claims Consequences
 LNG as Fuel

Conclusions

Question No.6 (No.3 Revisited)

Which solution do you think that will eventually prevail?

- **1**. Widespread usage of LNG as fuel
- 2. Widespread usage of Compliant Fuels
- 3. Widespread usage of Scrubbers
- 4. I (Still) don't have enough information to decide

69

Will 2020 regulations result to a historical change period?

Do you believe that the 1/1/2020 deadline should be postponed? 58% Yes

69% Yes

29% due to safety concerns for available fuels

Preferred options for meeting the SOx limits?48% Compliant fuels33% Scrubbers and Compliant fuels

20% of the surveyed fleet will have **scrubber** installed

Outcome of the new regulations in the long run? **48%** Extensive production of new grades of fuels

Will the new regulations indeed have a positive impact to the human health?

42% No

Machinery failures related to catalytic fines would increase?

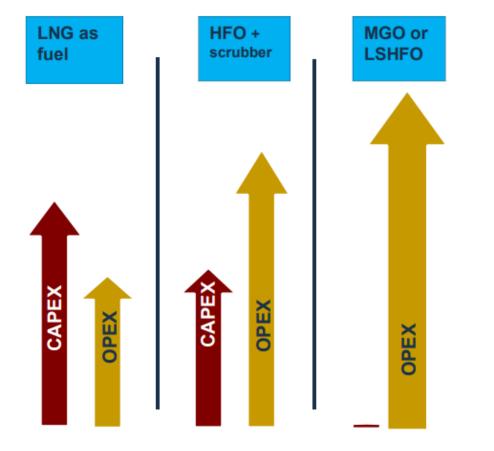
58% Yes

- Full survey results
- Presentation Slides
- Bibliography

VISIT: <u>https://margetis.com/downloads/</u>

Some conclusions and further food for thought...

1. 2020 Regulations


- Is it a MARITIME reform OR a REFINERY reform?
- Fear for **new/altered regulations** which may **compromise compliance** (e.g. open loop scrubbers, LNG as a GHG)
- The "usual" uncertainty with Policy Makers

2. Solutions

- Scrubbers, LNG or compliant low sulphur fuels?
- 3. LNG as fuel?
 - Compliant + competitive fuel price but
 - High investment cost
 - Bunkering infrastructure and regulations a work in progress
 - GHG effect

Overall Solutions Comparison

Source: Bureau Veritas

Some conclusions and further food for thought...

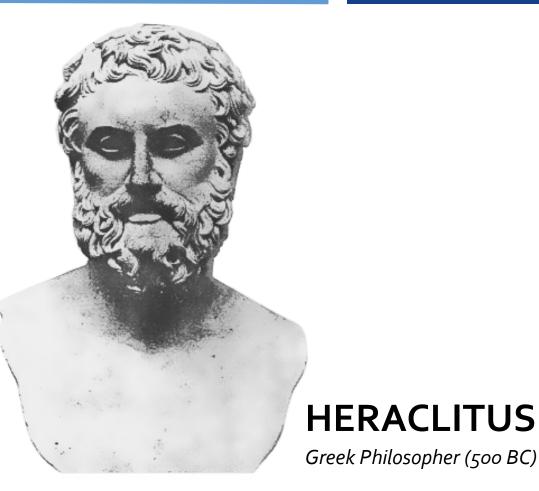
4. Our predictions...

- <u>Compliant Low Sulphur Fuels</u> will prevail and become standard MGO or low sulphur fuel oils (ULSFO & VLSFO)
- Expected <u>economical advantage of VLSFO</u> but uncertainty in quality/properties
- LNG as Fuel is being delayed
- <u>Scrubbers for large vessels</u> with high consumption and <u>standard trading</u> routes (e.g. Cruise ships, VLCCs, Containers) – Considerable CAPEX

Our final word...

More Combustion Related Claims!

What did the Ancient Greeks say?


DANTA PEI

pronounced Panta Re

"There is Nothing Permanent Except Change"

Everything Flows...

2020 Regulations a HOT and FLUID topic -Further developments during IMCC 2019

Are we Living Historical Times ?

Not yet...

26th - 28th September 2018, Dublin

Thank you!

Piraeus Head Office 133, Filonos str., 185 36 Piraeus -Greece

Tel.: +(30) 210 42 82 956-8 e-mail: piraeus@margetis.com

Regional Offices

Istanbul Office

Aydinliyolu Cad. No 137, 14th Floor, Apt No 68 Pendik, Istanbul - Turkey Tel: +90 (216) 504 5119 – 20, e-mail: istanbul@margetis.com

Houston Office

One Harbour Square, Suite 355, 3027 Marina Bay Drive, League City, Houston, TX 77573, USA Tel.: + 1 (512) 994.9531, e-mail: houston@margetis.com

Split Office

Smiljanica 2/II, HR-21000 Split - Croatia Tel.: +385 (21) 544 265, e-mail: split@margetis.com

Shanghai Office

Yonghe Road 398, Nantong, Jiangsu, Shanghai, P. R. China Tel: +86 (513) 89085515, e-mail: shanghai@margetis.com

Montenegro Office

Adriatic Shipyard, Bijela 85343 - Montenegro Tel: +(382) 31 671017, e-mail: adriatic@margetis.com

Dubai Office

908, Mohammed Al Mulla Tower, Al Ittihad Road, P.O.Box 32658, Sharjah, Dubai, U.A.E. Tel: +(971) 6 5638938, e-mail: dubai@margetis.com

Singapore Office

50, Chin Swee road #08-02, Thong Chai Building, Singapore (169874) Tel.: +65 82226580 (SIN), e-mail: singapore@margetis.com

India Office D-604, Raikar Chambers, Off K.D.Marg, Govandi (E) Mumbai - 400 088, India Tel.: + 91 22255 00500, e-mail: india@margetis.com

George D. Margetis B.S.E., M.S.E. (MIT) Managing Director Ioanna Kafka *MEng, MSc* Naval Architect & Marine Engineer