

Condition based Maintenance - Prevention

www.belfor.com © 2016, BELFOR Europe

RESTORING MORE THAN PROPERTY

Condition based Maintenance - Prevention

Ton van den Broek

- Nautical College Flushing
- Shell Tankers
- Shell Chemicals Refinery
- Corocor
- Recontec NL/B
- BELFOR Technology NL/B/D/ES/UK

- -Engineer
- -"Senior" process operator
- -Project manager
- -Branch manager / Technical Manager
- -Technical Sales Consultant

Condition based Maintenance - Prevention Subjects

- Evolution of ship propulsion
- Introduction of maintenance
- Contamination related risks
- Condition Monitoring / Assessment
- Condition Based Maintenance
- > Resume

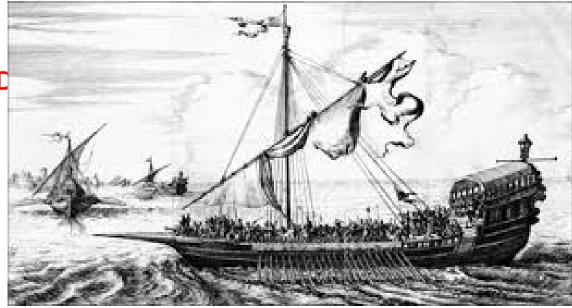
A small impression of fire & flooding!

Condition based Maintenance - Prevention

QUESTION 1:

What percentage of damages in general is considered to be caused by human involvement or failure?

QUESTION 2: By the way, who's the performer of the song?



Evolution of ship propulsion

Propulsion of a ship was manpower & sailing

> INVENTOR, C

www.belfor.com

Evolution of ship propulsion

www.belfor.com

RESTORING MORE THAN PROPERTY

- \succ Tools & machinery \rightarrow defects, breakdown
- \succ Renewal or repair \rightarrow breakdown maintenance
- > Maintenance prior to defects \rightarrow based on human senses
- Human senses & interpretation defer per person

Slow speed engines: over-dimensioned, solid, maintainable & repairable

- Periodical maintenance:
 safety margin
 - → commercial margin

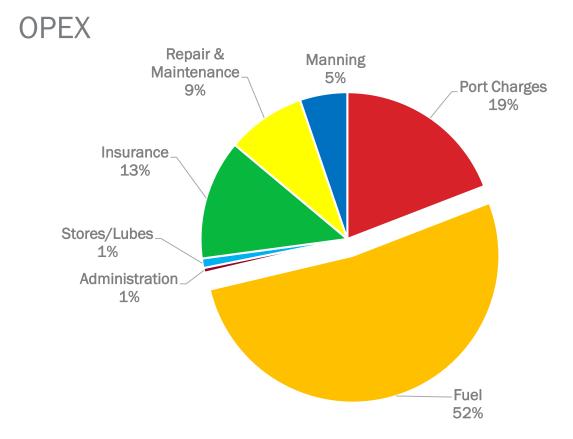
Too often & early, unnecessary, expensive

Potential cause of malfunctioning, breakdown or damages

QUESTION 3:

What percentage of H&M claims is annually accounted for by machinery claims?

- Machinery damages are estimated to account for up to 60% of the H&M claims!
- What is the influence of reduction of technically educated & trained crew up to the requirements of the "Minimum Safe Manning" on machinery claims?
- Is reduction of technically educated crew cost saving?



QUESTION 4:

What percentage of the OPEX of e.g. a container ship is accounted for by costs of manning?

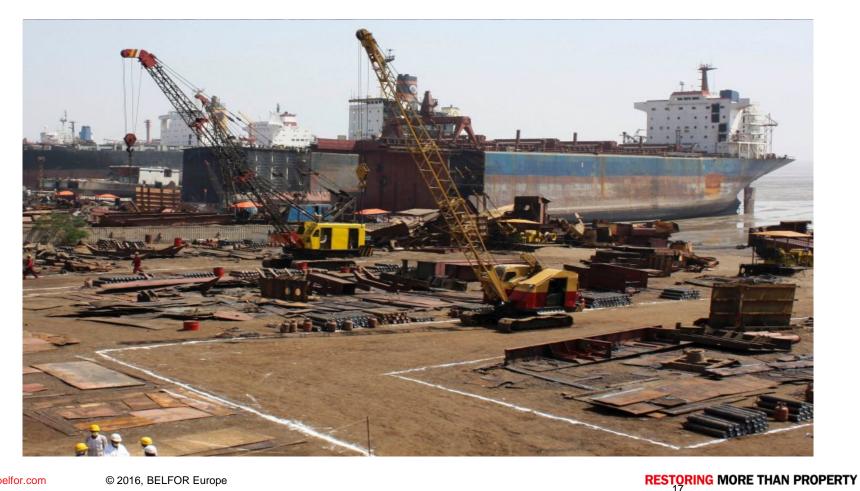
- > Why reduce the levels of education, thus competency?
- Knowing that technically competence of the crew is the biggest defence against machinery damages
- Why reducing costs of manning as the positive influence on OPEX is marginal?

- What can be the real reason?
 - Knowing that:
 - savings in costs of fuel (52% of OPEX) can be achieved by automation & advanced software
 - savings in costs of maintenance & repairs by maintenance teams in port based on "condition monitoring & assessment"

Reduction of the influence on board of "the weakest link"?

RESTORING MORE THAN PROPERTY

Future of maintenance


- Hardware structure, machinery, electrics & electronics
- Software navigation programs, engine control systems, condition monitoring systems, alarm systems, etc.

Condition based Maintenance

Condition based Maintenance - Prevention

www.belfor.com

Condition based Maintenance - Prevention

www.belfor.com

RESTORING MORE THAN PROPERTY

Electronic devices

Past:

goal of automation \rightarrow reduction of crew

Now & in future:

Brain & Nerves of Machinery

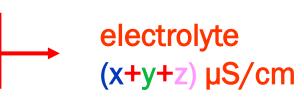
Alarms, Operational & Detection systems

Combustion / Green Ship

Remote Machinery Control

Navigation

Production of printed circuit board


Transport to receiver of printed circuit board

- extra contamination (composition?)
- relative humidity (momentarily)

→ electrolyte (x+y) µS/cm

Storage at receiver of printed circuit board

- extra contamination (composition?)
- relative humidity (momentarily)

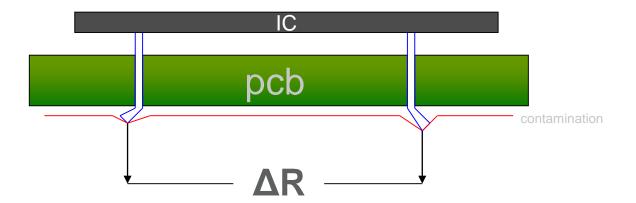
Assembly of equipment

- process time?
- contamination during assembly?
- relative humidity during assembly?

Important factors

electrolyte >(x+y+z) μS/cm

- composition of contamination (an-ions)
- > electrolytic conductibility contamination (µS/cm)
- > relative humidity
- $> \Delta T$ in the equipment (development of condensate)



Equipment & contamination

attack of lacquer


→ development of corrosion

conductivity (r.h. & contamination)



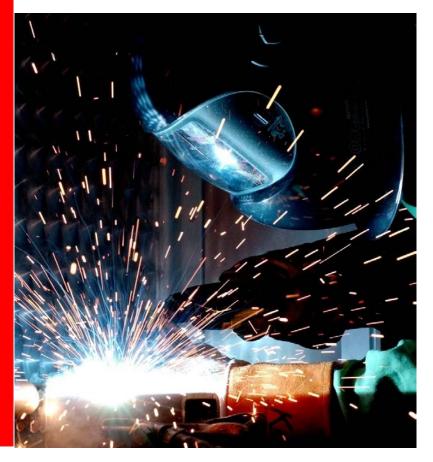
Components process larger electric power Drives become smaller, more compact

– <u>CONSEQUENCES:</u>

- → <u>increase</u> heat development
- → <u>decrease</u> air circulation
- → <u>increase</u> ventilation demand
- → <u>increase</u> internal contamination

Components process larger electric power Drives become smaller, more compact

– <u>CONSEQUENCES:</u>


- → <u>increase</u> heat development
- → <u>decrease</u> air circulation
- → increase ventilation demand
- → increase internal contamination
- → <u>decrease</u> heat exchange
- $\rightarrow \underline{increase} \Delta T$ in components

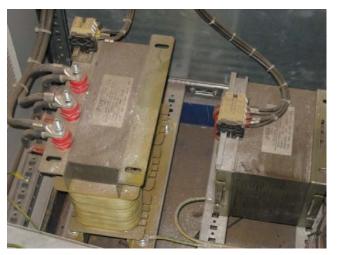
Disruption of functioning of processors & in the end break down

New Building phase of ship: wide range of (contaminating) activities

- > Welding
- > Cutting
- > Drilling
- > Grinding
- Blasting
- > Painting

New Building phase of ship: wide range of (contaminating) activities

- > Welding
- Cutting
- > Drilling
- > Grinding
- Blasting
- Painting
- > Abrasive, metal particles



New Building phase of ship: wide range of (contaminating) activities

Consequences!!!

Vapours

- > Welding
- Cutting
- > Drilling
- Grinding
- Blasting
- Painting
- > Abrasive, metal particles
- Conductive particals

New Building phase of ship: wide range of (contaminating) activities

Vapours

Consequences!!!

- > Welding
- Cutting
- > Drilling
- ➢ Grinding
- Blasting
- Painting
- > Abrasive, metal particles
- Conductive particles
- > Hygroscopic particles
- Corrosive sediment

Exposure to Contamination:

Operational period of ship:

- Salty Environment
- Variable Temperature
- Variable Relative Air Humidity
- Carbonaceous Vapours

Exposure to Contamination:

Operational period of ship:

Consequences!!!

- "Salty" Environment
- Variable Temperature
- Variable Relative Air Humidity
- Carbonaceous Vapours
- Heat exchange retarding & corrosive sediment
 Conductive & hygroscopic sediment

Criteria for Condition Assessment

consist of limit values for contamination.

have to be applicable both on electronic equipment and the maritime situation.

must be measurable and practical.

must be acknowledged and accepted.

should form a framework in which maintenance restoration is committed.

Standard J-STD-001F ISM-code

Criteria for Condition Assessment Standard J-STD-001F

Modern electronics are sensitive (susceptibility to faults) towards contamination.

Limit values allowed levels of contamination.

- Standard J-STD-001F (2014) demands a maximum limit value of 1.56 µg/cm² of sodium chloride (NaCl) equivalents which corresponds with 0,95 µg/cm² of chloride equivalents.
- > According to J-STD-001F (2014) circuit boards must show a minimum surface insulation resistance of $10^4 M\Omega$.
- After the effects of high relative air humidity or condensation, water damage or dusts on circuit boards, a maximum contamination with chlorides or other anions of 3 µg/cm² is permissible in order to avoid a dropping of the surface insulation resistance to less than 10⁴ MΩ.
- Continuing dependability, however, can only be achieved with a maximum concentration of 1 – 2 µg/cm² of chloride equivalents. For the considerably more aggressive acids and alkalis, the limit value has to be set at a maximum of 1 µg/cm² of chloride equivalents.

Criteria for Condition Assessment Standard J-STD-001F

Modern electronics are sensitive (susceptibility to faults) towards contamination.

Limit values allowed levels of contamination.

 Conductivity 	 Total Anion Concentration 	 Danger of Corrosion 					
• < 260 µS/cm	• 1 <u><</u> 3 µg/cm ²	 Conductive & corrosive uncritical range 					
• 260 ≤ 600 µS/cm	• 3 ≤ 5 µg/cm²	 Conductive & corrosive critical transition range 					
• > 600 µS/cm	• > 5 µg/cm²	 Conductive & corrosive critical range 					

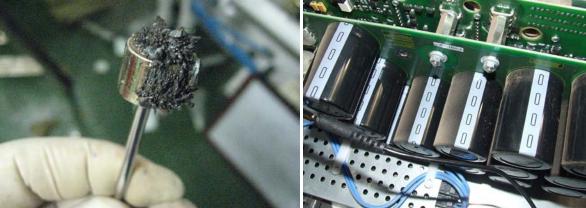
Criteria for Condition Assessment

International Safety Management Code

10 MAINTENANCE OF THE SHIP AND EQUIPMENT

10.2 in meeting these requirements the company should ensure that:

inspections are held at appropriate intervals;
 any non-conformity is reported, with its possible cause, if known;
 appropriate corrective action is taken; and
 records of these activities are maintained


Condition Assessment

New Building & Operational phase of the ship:

Limits Standard J-STD-001F

	 Conductivity 	•Total Anion Concentration	•Danger of Corrosion				
New→	• < 260 µS/cm	• 1 < 3 µg/cm²	 corrosively uncritical range 				
Operational \rightarrow	• 260 ≤ 600 µS/cm	• 3 ≤ 5 µg/cm²	 corrosively critical transition range 				

Visual inspection & situation survey before sea trial or dry docking

© 201

Condition Assessment

New Building & Operational phase of the ship:

Limits Standard J-STD-001F

	Conductivity	•Total Anion Concentration	•Danger of Corrosion
New→	• < 260 µS/cm	• 1 < 3 μg/cm²	 corrosively uncritical range
Operational \rightarrow	• 260 ≤ 600 µS/cm	• 3 ≤ 5 µg/cm²	 corrosively critical transition range

Visual inspection & situation survey before sea trial or dry Wipe samples & analysis before sea trials or dry docking

RESTORING MORE THAN PROPERTY

RESTORING MORE THAN PROPERTY

Condition Assessment

New Building & Operational phase of the ship:

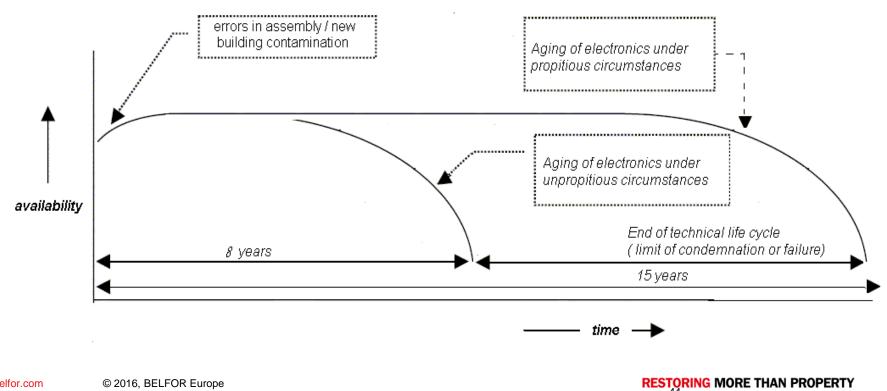

Limits Standard J-STD-001F

Sam	ple Date:	02-07-2013					by: Ton	van den Bi	roek			🖂 🛙	oefore / 🗌	after resto	oration
Job I	No.:	13-FE-xxxx				Cus	stomer: Xxx	x							
Kind Rema	of Damage: arks:	Unknown contamination R 1300xxx-01				Refe	erence: yy <mark>y</mark> y	Punt 47	.0 °C						47.3
ltem No	Device / Un	it / Subassembly	Posi- tion	Sur- face	Appea rance	area	Conductivity	Fluoride µg/cm ²	Chloride µg/cm ²	C Nitrate µg/cm ²	ontaminat Sulfate µg/cm²	ion Calcium μg/cm²	lron μg/cm ²	Sodium µg/cm²	Zinc µg/cm ²
1	MEDP br. xxxx		h	m	D	100	861	0,42	3,11	8,91	21,43	5,53	15,02	2,09	11,84
2	MCC Cubicle X		h	m	D	100	262	0,14	1,41	5,97	1,59	1,05	2,52	0,79	12,34
3	MCC Cubicle Y		h	m	D	100	379	0,24	1,76	8,14	4,13	1,97	4,07	1,13	6,37
4	MCC Cubicle Z		h	m	D	100	367	0,28	1,97	9,27	2,09	0 <mark>1,8</mark> 8	4,85	1,09	16,50
					1		4			#	H - 1				*(P) 813
					1					-					
	Abbreviations			eneral)			face (Metals					earance			
n.a. * norm 50 ml	=< detection limit =not analyzed nalized to 500 cm ² in 1 extraction volume acc. port 28 (2002)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	= Metal Plastic	rete Jer Paint	Cr = CrZn = Cu = AAI = Ni = Sn =		CFe	 Stainless S Iron / Stee general Cast Iron Blued Stee Mid Steel 	el CO : EP : P : R :	 Condens Corrosior Extinguis Particles Soot Rust Dust 		Contamin (I) = lic	iht edium		uated on: 7.2013 Ifer
		Vr = left/right W	= Wood		Zn = .	Zinc		Trefl = 3	0.0 s =	0.98 22	/10/2008	11:27			39.9

Condition based Maintenance - Decontamination

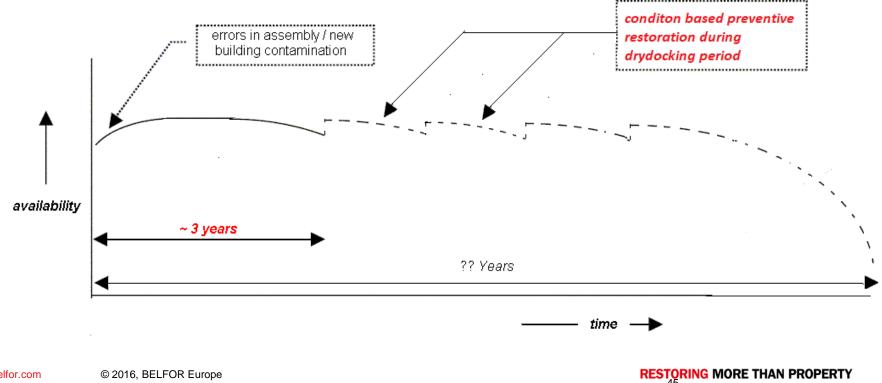
Purpose of Condition based Maintenance - Decontamination

- Increase of effectiveness during the same longevity
- Prevent malfunctioning, breakdown & damages


	Industrial Electronics				
Environmental Specifications	Longevity				
Neutral / Dry	15 (15-20) years				
Damp / Moist	10 (8-15) years				
Acid / Corrosive / Salt	10 (8-15) years				
High Temperature > 40 °C.	10 (8-15) years				
Low Temperature < 0 °C.	10 (8-15) years				

Purpose of Condition based Maintenance - Decontamination

- Increase of effectiveness during the same longevity
- Prevent malfunctioning, breakdown & damages



Purpose of Condition based Maintenance - Decontamination

- Increase of effectiveness during the same longevity
- Prevent malfunctioning, breakdown & damages

Condition based Maintenance

Advantages of CBM

Decrease of unexpected shutdowns = Improvement System Reliability

Reduction of Stress and Workload of Maintenance Personnel

Reduction of Down Time = Reduction of L.O.H.

Condition based Maintenance

Resume

risks involved in contamination and electrics / electronics most riskey moments condition assessment solutions

Condition based Maintenance

THANK YOU

FOR YOUR ATTENTION